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Spectral centralities

The different centrality measures formalize what it means for a node to

be “important” or “influential”. Some (like degree) only look at local

influence, others (like eigenvector centrality and PageRank) emphasize

long-range effects, and others (like subgraph and Katz centrality) try to

attain a balance between short- and long-range effects.
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Spectral centralities

The different centrality measures formalize what it means for a node to

be “important” or “influential”. Some (like degree) only look at local

influence, others (like eigenvector centrality and PageRank) emphasize

long-range effects, and others (like subgraph and Katz centrality) try to

attain a balance between short- and long-range effects.

Remark

For directed graphs it is often necessary to distinguish between hubs and

authorities. Indeed, in a directed graph a node can play two roles:

broadcaster and receiver of information.

Crude measures of hub and authority are provided by the out-degree and

in-degree, respectively.
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Spectral centralities

The different centrality measures formalize what it means for a node to

be “important” or “influential”. Some (like degree) only look at local

influence, others (like eigenvector centrality and PageRank) emphasize

long-range effects, and others (like subgraph and Katz centrality) try to

attain a balance between short- and long-range effects.

Spectral centralities are based on eigenvalues and eigenvectors of adjacency

matrices and implement a “mutual reinforcement” concept:

A node is “important” if it is connected to (or pointed by) other “impor-

tant” nodes.
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Eigenvector centrality

Mutual reinforcement concept

The “importance” of a node depends on the “importance” of nodes

linked to it.

Perron eigenvector of symmetric adjacency matrix A:

λx = Ax ⇐⇒ λxi =
n∑

j=1

Aijxj =
∑
j :i∼j

xj .

Existence, uniqueness, positivity: due to Perron–Frobenius thm.,

if the graph is strongly connected.

P. Bonacich.

Power and Centrality: A Family of Measures.

Amer. J. Sociology, 92 (1987) 1170–1182.
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Eigenvector centrality

Mutual reinforcement concept

The “importance” of a node depends on the “importance” of nodes

linked to it.

Perron eigenvector of symmetric adjacency matrix A:

λx = Ax ⇐⇒ λxi =
n∑

j=1

Aijxj =
∑
j :i∼j

xj .

x = limk→∞ Akx0/‖Akx0‖.

‖ · ‖ = ‖ · ‖1  The eigenvector centrality xi of node i ∈ V is the limit as

k → ∞ of the percentage of walks of length k which visit node i among

all walks of length k on G.

Thus, the eigenvector centrality measures the global influence of node i .
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Eigenvector centrality

Mutual reinforcement concept

The “importance” of a node depends on the “importance” of nodes

linked to it.

Perron eigenvector of symmetric adjacency matrix A:

λx = Ax ⇐⇒ λxi =
n∑

j=1

Aijxj =
∑
j :i∼j

xj .

If the graph is directed then we have two definitions:

Left eigenvector

AT x = λx

A node is important if it points to

important nodes.

Right eigenvector

Ax = λx

A node is important if it is pointed

by important nodes.
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Eigenvector centrality - Complements

Theorem

Let A, Ā be irreducible, nonegative matrices,

let Ax = ρx and Āx̄ = ρ̄x̄ be their Perron eigenpairs.

Let I be the index set of unchanged rows:

I = {i : Ai,: = Āi,:}.

Then,

∀i ∈ I, x̄i
xi
≤ ρ

ρ̄
max
k

x̄k
xk
.

In particular, if ρ̄ > ρ then maxk∈I
x̄k
xk
< maxk

x̄k
xk

.

E. Dietzenbacher. Perturbations of matrices: a theorem on the

Perron vector and its applications to input-output models. Z.

Nationalökonom., 48 (1988), 389–412.

4



Eigenvector centrality - Complements

Theorem

Let A, Ā be irreducible, nonegative matrices,

let Ax = ρx and Āx̄ = ρ̄x̄ be their Perron eigenpairs.

Let I be the index set of unchanged rows:

I = {i : Ai,: = Āi,:}.

Then,

∀i ∈ I, x̄i
xi
≤ ρ

ρ̄
max
k

x̄k
xk
.

Corollary

If we add an edge to a graph then the largest relative increase in

eigenvector centrality is attained by one of its nodes.
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Katz centrality

A popularity contest among six people. Arrows represent votes.

Who is the leader?

1

2

3

4

5

6BB

����

BB // 66

\\

��

BB

\\

��((

i 1 2 3 4 5 6

d in
i 2 1 1 3 1 4

ki 13 1 1 11.4 6.2 12.6

The in-degree is the received vote count, but it does not take into

account the “status” of who casts the votes.

L. Katz. A new status index derived from sociometric analysis.

Psychometrica, 18 (1953), 39–43.
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Katz centrality

Idea: Take into account not only the votes cast directly but also the

votes received by those who vote, and so on.

A person is prestigious if he is endorsed by prestigious people.

Katz centrality of node i :

ki = α
∑
j

Aji︸ ︷︷ ︸
direct votes

+ α2
∑
j

[A2]ji︸ ︷︷ ︸
1-indirect votes

+ α3
∑
j

[A3]ji︸ ︷︷ ︸
2-indirect votes

+ · · ·

Matrix-vector notation: Let k = (k1, . . . , kn)T . Then,

k = αAT e + (αAT )2e + (αAT )3e + · · ·

=
∞∑
i=1

(αAT )ie.
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Katz centrality

Theorem

If |α| < 1/ρ(A) then

I + αA + α2A2 + · · · =
∞∑
k=0

αkAk = (I − αA)−1.

Katz centrality

If |α| < 1/ρ(A) then

k = (I − αA)−1e − e.

Apart of the constant term e, the vector k of Katz indices is the solution

of the linear system (I − αAT )x = e. Note that I − αA is a nonsingular

M-matrix, in particular (I − αA)−1 ≥ 0.
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Katz centrality (cont.)

In the case of a directed network one can use the solution vectors of the

linear systems

(I − αA)x = e and (I − αAT )y = e

to rank hubs and authorities, respectively. Iterative methods are normally

used for this task. Note that for an undirected graph the condition

number of I − αA is bounded by 2/(1− αρ(A)). For α not too close to

1/ρ(A), convergence is usually fast.

Theorem

• For α→ 0 Katz ranking reduces to degree ranking.

• For α→ 1/ρ(A) Katz centrality reduces to eigenvector centrality.

M. Benzi, C. Klymko. SIMAX 36 (2015), 686–706.
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Katz centrality — example

Figure 1: An example of the Katz model using α = .9 (top) and α = .1

(bottom). Here ρ(A) = 1.

M. Franceschet. PageRank: Standing on the shoulders of giants.

Comm. ACM, 54 (2011), 92–101. 9



PageRank

A Web page is important if it is pointed to by other important pages.

Let G be a directed graph where dout
i > 0 for all i ∈ V .

For any 0 < α < 1 the equation

pi = 1− α + α
∑
j :j→i

pj
dout
j

,

defines the PageRank centrality of node i ∈ V .

Originally introduced by S. Brin and L. Page (1999) to rank web pages in

the Google search engine.

D. Gleich. PageRank beyond the web.

SIAM Rev. 57 (2015), 321–363.

A list of more than 20 PageRank-related centrality indices currently used

within different domains including bibliometry, social networks, literature,

biology. . .
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PageRank

A Web page is important if it is pointed to by other important pages.

Let G be a directed graph where dout
i > 0 for all i ∈ V .

For any 0 < α < 1 the equation

pi = 1− α + α
∑
j :j→i

pj
dout
j

,

defines the PageRank centrality of node i ∈ V .

In matrix form, (I − αM)p = (1 − α)e where Mij = Aji/d
out
j is column

stochastic.

Basic iterative method

The iteration

p(k+1) = αMp(k) + (1− α)e

is convergent:

‖p(k+1) − p̄‖ ≤ α‖p(k) − p̄‖.
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PageRank

A Web page is important if it is pointed to by other important pages.

Let G be a directed graph where dout
i > 0 for all i ∈ V .

For any 0 < α < 1 the equation

pi = 1− α + α
∑
j :j→i

pj
dout
j

,

defines the PageRank centrality of node i ∈ V .

Equivalently, p = (p1, . . . , pn)T is a Perron eigenvector

of the Google matrix

G = αAT Diag(1/dout
1 , . . . , 1/dout

n )︸ ︷︷ ︸
M

+
1− α
n

eeT .

Apart of a normalization, the basic iterative method coincides with the

power method for G .
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PageRank

A Web page is important if it is pointed to by other important pages.

Figure 2: A PageRank instance using α = .85. Scores normalized so

that
∑

i pi = 100.
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Hyperlinked Induced Topics Search (HITS)

J. Kleinberg. Authoritative sources in a hyperlinked

environment, J. ACM, 48 (1999), 604–632.

Internet is represented by a digraph G where nodes represent web

pages and directed edges represent hyperlinks.

Kleinberg’s idea

Each node in a directed network is associated to two scores:

• The hub score: quantifies the goodnes of that node as a

“portal” or access point to informative nodes

• The authority score: quantifies the “informative quality” of

that node.
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HITS (cont.)

Mutual reinforcement concept

A good hub is a node that points to good authorities.

A good authority is a node that is pointed by good hubs.

σhi =
∑
j :i→j

aj

σai =
∑
j :j→i

hj
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HITS (cont.)

Mutual reinforcement concept

A good hub is a node that points to good authorities.

A good authority is a node that is pointed by good hubs.

A = adj. matrix ⇒

σh = Aa (hub scores)

σa = AT h (auth. scores)

σ2h = Mhubh, Mhub = AAT = hub matrix;

σ2a = Mautha, Mauth = AT A = authority matrix.

• Mhub,Mauth are often reducible (Perron eigenpairs not unique)

• If A = AT then h = a = eigenvector centrality.

13



HITS (cont.)

We say that HITS behaves fairly on a digraph G
when the following two conditions are met:

(1) hub/auth scores are unique, apart of normalization;

(2) dout
i > 0⇒ hi > 0 or, equivalently, d in

i > 0⇒ ai > 0.

An example of unfair behaviour:

G :

1

2 3

4

�� ��

�� ��
 Mhub =


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 .

Any vector h = (α, β, β, 0)T with α, β ≥ 0 is a valid hub vector.
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HITS (cont.)

We say that HITS behaves fairly on a digraph G
when the following two conditions are met:

(1) hub/auth scores are unique, apart of normalization;

(2) dout
i > 0⇒ hi > 0 or, equivalently, d in

i > 0⇒ ai > 0.

Theorem

Let M̂hub be the matrix obtained by removing null rows and columns

from Mhub. HITS behaves fairly if and only if M̂hub is irreducible.

(Analogous statement with auth in place of hub.)
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HITS (cont.)

We say that HITS behaves fairly on a digraph G
when the following two conditions are met:

(1) hub/auth scores are unique, apart of normalization;

(2) dout
i > 0⇒ hi > 0 or, equivalently, d in

i > 0⇒ ai > 0.

If G is weakly connected then adding a (weighted) loop on every node

makes HITS behave fairly (Mhub,Mauth become irreducible)
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Subgraph centrality

Subgraph centrality measures the centrality of a node by taking

into account the number of subgraphs the node “participates” in.

This is done by counting, for all k = 1, 2, . . . the number of closed

walks in G starting and ending at node i , with longer walks being

penalized (given a smaller weight).

It is sometimes useful to introduce a tuning parameter β > 0 to

simulate external influences on the network, for example, increased

tension in a social network, financial distress in the banking

system, etc.

E. Estrada, J. A. Rodŕıguez-Velásquez, Phys. Rev. E, 2005.
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Subgraph centrality (cont.)

Recall that

• (Ak)ii = # of closed walks of length k based at node i ,

• (Ak)ij = # of walks of length k that connect nodes i and j .

Using βk/k! as weights leads to the notion of subgraph centrality:

SC (i , β) =

[
I + βA +

β2

2!
A2 +

β3

3!
A3 + . . .

]
ii

=
[
eβA
]
ii
.

Note that SC (i , β) ≥ 1. The weights are needed to “penalize” longer

walks, and to make the power series converge.
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Subgraph centrality (cont.)

It is sometimes desirable to normalize the subgraph centrality of a

node by the sum

EE (G) =
n∑

i=1

SC (i) =
n∑

i=1

[eβA]ii = trace(eβA)

of all the subgraph centralities. The quantity EE (G) is known as

the Estrada index of the graph G. This index has powerful

discrimination in measuring the robustness of complex networks to

link removal.
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Communicability

Communicability measures how “easy” it is to send a message from node

i to node j in a network by a weighted sum of walks i  j :

• C (i , j) =
[
eβA
]
ij

=
∑∞

k=0 β
k(Ak)ij/k!

• C (i , j) =
[
(I − αA)−1

]
ij

=
∑∞

k=0 α
k(Ak)ij

Communicability has been successfully used to identify bottlenecks in net-

works and for community detection.

E. Estrada, N. Hatano. Communicability in complex networks. Phys.

Rev. E, 77 (2008), 036111;

E. Estrada, D. J. Higham. Network properties revealed through

matrix functions. SIAM Rev., 52 (2010), 696–714.

18



Communicability

Communicability measures how “easy” it is to send a message from node

i to node j in a network by a weighted sum of walks i  j :

• C (i , j) =
[
eβA
]
ij

=
∑∞

k=0 β
k(Ak)ij/k!

• C (i , j) =
[
(I − αA)−1

]
ij

=
∑∞

k=0 α
k(Ak)ij

The total communicability of node i ∈ V is defined as

TC (i) =
n∑

j=1

C (i , j).

Highly connected networks, such as small-world networks without bottle-

necks, can be expected to have a high total communicability.
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Communicability

Communicability measures how “easy” it is to send a message from node

i to node j in a network by a weighted sum of walks i  j :

• C (i , j) =
[
eβA
]
ij

=
∑∞

k=0 β
k(Ak)ij/k!

• C (i , j) =
[
(I − αA)−1

]
ij

=
∑∞

k=0 α
k(Ak)ij

Communicability distance

Let G be undirected. Then

Cdist(i , j) =
√
C (i , i) + C (j , j)− 2C (i , j)

is a distance on G. Indeed,

Cdist(i , j)2 = (ei − ej)
T eβA(ei − ej) = ‖ei − ej‖2

E

where E = eβA/2 is symmetric and positive definite.
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Communicability

Communicability measures how “easy” it is to send a message from node

i to node j in a network by a weighted sum of walks i  j :

• C (i , j) =
[
eβA
]
ij

=
∑∞

k=0 β
k(Ak)ij/k!

• C (i , j) =
[
(I − αA)−1

]
ij

=
∑∞

k=0 α
k(Ak)ij

The average total communicability of G,

TC (G) =
1

n

n∑
i,j=1

C (i , j) =
1

n
eT eβAe

(usually with β = 1) provides a global measure of how “well-connected” a

network is, and can be used to compare different network structures.

This is another spectral measure that can be computed very efficiently,

even for large graphs, since it involves computing linear functionals of eβA

or (I − αA)−1, and Krylov subspace methods are very good at this!
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Krylov subspace methods in a nutshell

The main idea behind Krylov methods is the following:

• A nested sequence of suitable low-dimensional Krylov subspaces

〈b,Ab,A2b, . . . ,Ak−1b〉 is generated, 0 < k � n.

• The original problem is projected onto these subspaces.

• The (small) projected problems are solved “exactly”.

• The approximate solution is projected back to the original

n-dimensional space.

Krylov subspace methods are examples of polynomial approximation

methods, where f (A)v is approximated by p(A)v , where p is a

(low-degree) polynomial. This polynomial approximation is optimal in

some sense. If f is a smooth function, convergence is usually fast; for

entire functions it is superexponential in the degree of the polynomial.
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Limiting behaviors

• SC (i , β) = (eβA)ii

• TC (i , β) = (eβAe)i

Theorem

Let G be a simple graph.

• For β → 0 the rankings produced by SC (i , β) and TC (i , β) reduce

to degree ranking.

• For β →∞ the centralities SC (i , β) and TC (i , β) reduce to

eigenvector centrality.

M. Benzi, C. Klymko. On the limiting behavior of

parameter-dependent network centrality measures.

SIMAX 36 (2015), 686–706.
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Other matrix functions

Other matrix functions of interest are

cosh(A) = 1
2 (eA + e−A), sinh(A) = 1

2 (eA − e−A),

which contain the even part and the odd part of the power series of eA,

respectively:

eA = I + A + 1
2!A

2 + 1
3!A

3 + . . .

Thus cosh(A) and sinh(A) correspond to considering only walks of even

and odd length, respectively.
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Other matrix functions

Other matrix functions of interest are

cosh(A) = 1
2 (eA + e−A), sinh(A) = 1

2 (eA − e−A),

which contain the even part and the odd part of the power series of eA,

respectively:

eA = I + A + 1
2!A

2 + 1
3!A

3 + . . .

A bipartitiveness measure

In a bipartite graph, all closed walks have odd lengths and the eigenvalues

of A occur in ±-pairs. Hence trace(sinh(A)) = 0. Thus the quantity

B(G) =
trace(cosh(A))

trace(eA)

provides a measure of how “close” a graph G is to being bipartite.
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Other matrix functions

Other matrix functions of interest are

cosh(A) = 1
2 (eA + e−A), sinh(A) = 1

2 (eA − e−A),

which contain the even part and the odd part of the power series of eA,

respectively:

eA = I + A + 1
2!A

2 + 1
3!A

3 + . . .

Odd subgraph centrality of node i ∈ V : SC odd(i) = (sinh(A))ii .

Let v = (v1, . . . , vn)T be the eigenvector centrality.

Plotting SC odd(1), . . . ,SC odd(n) vs. v1, . . . , vn allows to grasp essential

features of G.
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Other matrix functions

E. Estrada. Topological structural classes of complex networks.

Phys. Rev. E, 75 (2007), 016103. 22


